Files
web/content/notes/ready/binary-operations/index.md
2025-02-17 09:38:44 +00:00

16 KiB

title, description, date, draft, tags, author, showToc
title description date draft tags author showToc
Binary Operations 2025-02-17T08:37:24+00:00 false
computer-science
TrudeEH true

Binary

Binary is a base-2 numeral system: A simple way to represent numbers using only two states.

Binary Decimal Hexadecimal
0000 00 00
0001 01 01
0010 02 02
0011 03 03
0100 04 04
0101 05 05
0110 06 06
0111 07 07
1000 08 08
1001 09 09
1010 10 0A
1011 11 0B
1100 12 0C
1101 13 0D
1110 14 0E
1111 15 0F

Binary Calculations

Speaking Binary

The information in this section is non-standard, and mostly a curiosity.

You may struggle to pronounce large binary numbers, as saying a long list of 0s and 1s is very inefficient. Instead, we can do something like this:

speaking binary

To be able to say any binary number, list the number, starting by the last digit:

speaking binary

And pronounce the ones that correspond to a 1 bit.

speaking binary

Pronounce a Binary Number at a Glance

  1. Break the number at its largest pair of bits.

    speaking binary

  2. Represent the left and right sides.

    speaking binary

    In this example, there is a two in the order of magnitude hex.

  3. Continue to represent the left and right sides recursively.

    speaking binary

    The last number is four.

Decode a Spoken Binary Number

Starting with two hex four:

  1. Find the largest power of two.

    speaking binary

  2. The number is equal to the left side, times the order of magnitude, plus the right side.

    speaking binary

Avoiding Repetition

Repetition can be avoided by combining some very common, small numbers:

speaking binary

speaking binary

These shortcuts essentially create a quaternary system to pronounce binary, but in this case, the result improves spoken efficiency by a lot.

Arithmetic Operations

Addition

Adding two numbers can be done using a simple, manual algorithm: By adding the last bit of both numbers first, carry if necessary, then move on to the next number, and so on.

+ 0 1
0 0 1
1 1 10

addition

To add numbers more efficiently by hand, you can group bits together and memorize the patters, effectively doubling your speed.

hand addition

To improve calculation speed even further, you can group more bits, and learn those patterns as well.

hand addition

Half Adder

Add 2, single-digit binary numbers.

A B Carry Sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

!image68.png

Full Adder

When adding 2 binary numbers, one operation might return a carry value, which the half adder can't accept, as it only has 2 inputs.

!image69.png

To solve this issue, a full adder accepts 3 inputs.

!image70.png

8-Bit Adder

!image71.png

Subtraction

Subtraction can result in negative numbers. Like how additions need a carry, subtraction needs a borrow.

Half Subtractor

Subtract 2, single-digit binary numbers.

A B Diff Borrow
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

!image72.png

Full Subtractor

A full subtractor accepts the borrow value, allowing us to chain results.

A B Bin Diff Bout
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

!image73.png

8-Bit Subtractor

!image74.png

Multiplication

Multiplication is also similar to its decimal counterpart, but because binary is so small compared to decimal, the steps are also much simpler.

First, multiply the top number to every digit of the bottom one, and then add the results together.

X 0 1
0 0 0
1 0 1
    ||.|		
 x  ||.
    ....
   ||.|
+ ||.|
 |..|||.

2-Bit By 2-Bit Multiplier

!image75.png

Division

  1. Find the smallest part of the dividend greater than or equal to the ==divisor==.

    |.|  ||..|
    
  2. Write the first digit of ==the answer==, and ==copy the original divisor down==.

    			 |
    |.|  ||..|
    		 |.|
    
  3. Subtract ==the aligned dividend digits== by ==the digits under the dividend==.

    			 |
    |.|  ||..|	 
    		 |.|
    			 |
    
  4. Lower ==the next dividend digit==.

    			 |
    |.|  ||..|	 
    		 |.|
    			 |.
    
  5. Is ==the total== greater or equal to the ==divisor==? If so, add a 1 to the answer. If not, ==add a== ==0== ==to the answer== ==and return to step 4==.

    			 |.
    |.|  ||..|	 
    		 |.|
    			 |.
    
  6. Return to step 2, until you reach the end of the number. If you reached the end, you found ==the answer==.

    			 |.|
    |.|  ||..|	 
    		 |.|
    			 |.|
    			 |.|
    				 .
    

ASCII

Binary can also be used to represent characters.

Dec Hex Binary HTML Char Description
0 00 00000000 � NUL Null
1 01 00000001  SOH Start of Heading
2 02 00000010  STX Start of Text
3 03 00000011  ETX End of Text
4 04 00000100  EOT End of Transmission
5 05 00000101  ENQ Enquiry
6 06 00000110  ACK Acknowledge
7 07 00000111  BEL Bell
8 08 00001000  BS Backspace
9 09 00001001 	 HT Horizontal Tab
10 0A 00001010 
 LF Line Feed
11 0B 00001011  VT Vertical Tab
12 0C 00001100  FF Form Feed
13 0D 00001101 
 CR Carriage Return
14 0E 00001110  SO Shift Out
15 0F 00001111  SI Shift In
16 10 00010000  DLE Data Link Escape
17 11 00010001  DC1 Device Control 1
18 12 00010010  DC2 Device Control 2
19 13 00010011  DC3 Device Control 3
20 14 00010100  DC4 Device Control 4
21 15 00010101  NAK Negative Acknowledge
22 16 00010110  SYN Synchronize
23 17 00010111  ETB End of Transmission Block
24 18 00011000  CAN Cancel
25 19 00011001  EM End of Medium
26 1A 00011010  SUB Substitute
27 1B 00011011  ESC Escape
28 1C 00011100  FS File Separator
29 1D 00011101  GS Group Separator
30 1E 00011110  RS Record Separator
31 1F 00011111  US Unit Separator
32 20 00100000   space Space
33 21 00100001 ! ! exclamation mark
34 22 00100010 " " double quote
35 23 00100011 # # number
36 24 00100100 $ $ dollar
37 25 00100101 % % percent
38 26 00100110 & & ampersand
39 27 00100111 ' ' single quote
40 28 00101000 ( ( left parenthesis
41 29 00101001 ) ) right parenthesis
42 2A 00101010 * * asterisk
43 2B 00101011 + + plus
44 2C 00101100 , , comma
45 2D 00101101 - - minus
46 2E 00101110 . . period
47 2F 00101111 / / slash
48 30 00110000 0 0 zero
49 31 00110001 1 1 one
50 32 00110010 2 2 two
51 33 00110011 3 3 three
52 34 00110100 4 4 four
53 35 00110101 5 5 five
54 36 00110110 6 6 six
55 37 00110111 7 7 seven
56 38 00111000 8 8 eight
57 39 00111001 9 9 nine
58 3A 00111010 : : colon
59 3B 00111011 &#59; ; semicolon
60 3C 00111100 &#60; < less than
61 3D 00111101 &#61; = equality sign
62 3E 00111110 &#62; > greater than
63 3F 00111111 &#63; ? question mark
64 40 01000000 &#64; @ at sign
65 41 01000001 &#65; A
66 42 01000010 &#66; B
67 43 01000011 &#67; C
68 44 01000100 &#68; D
69 45 01000101 &#69; E
70 46 01000110 &#70; F
71 47 01000111 &#71; G
72 48 01001000 &#72; H
73 49 01001001 &#73; I
74 4A 01001010 &#74; J
75 4B 01001011 &#75; K
76 4C 01001100 &#76; L
77 4D 01001101 &#77; M
78 4E 01001110 &#78; N
79 4F 01001111 &#79; O
80 50 01010000 &#80; P
81 51 01010001 &#81; Q
82 52 01010010 &#82; R
83 53 01010011 &#83; S
84 54 01010100 &#84; T
85 55 01010101 &#85; U
86 56 01010110 &#86; V
87 57 01010111 &#87; W
88 58 01011000 &#88; X
89 59 01011001 &#89; Y
90 5A 01011010 &#90; Z
91 5B 01011011 &#91; [ left square bracket
92 5C 01011100 &#92; |backslash
93 5D 01011101 &#93; ] right square bracket
94 5E 01011110 &#94; ^ caret / circumflex
95 5F 01011111 &#95; _ underscore
96 60 01100000 &#96; ` grave / accent
97 61 01100001 &#97; a
98 62 01100010 &#98; b
99 63 01100011 &#99; c
100 64 01100100 &#100; d
101 65 01100101 &#101; e
102 66 01100110 &#102; f
103 67 01100111 &#103; g
104 68 01101000 &#104; h
105 69 01101001 &#105; i
106 6A 01101010 &#106; j
107 6B 01101011 &#107; k
108 6C 01101100 &#108; l
109 6D 01101101 &#109; m
110 6E 01101110 &#110; n
111 6F 01101111 &#111; o
112 70 01110000 &#112 p
113 71 01110001 &#113; q
114 72 01110010 &#114; r
115 73 01110011 &#115; s
116 74 01110100 &#116; t
117 75 01110101 &#117; u
118 76 01110110 &#118; v
119 77 01110111 &#119; w
120 78 01111000 &#120; x
121 79 01111001 &#121; y
122 7A 01111010 &#122; z
123 7B 01111011 &#123; { left curly bracket
124 7C 01111100 &#124; | vertical bar
125 7D 01111101 &#125; } right curly bracket
126 7E 01111110 &#126; ~ tilde
127 7F 01111111 &#127; DEL delete