INC: how_to_computer

This commit is contained in:
2025-02-21 17:01:15 +00:00
parent 0c2eff3f20
commit d070d924a3
41 changed files with 713 additions and 308 deletions

View File

@@ -4,21 +4,33 @@
"type": "split",
"children": [
{
"id": "da1c1c5ba8d6b94f",
"id": "929b0fcada89ed0e",
"type": "tabs",
"children": [
{
"id": "ab03f7100c1ce0fb",
"id": "28c9848f88828495",
"type": "leaf",
"state": {
"type": "markdown",
"state": {
"file": "posts/notes-update.md",
"file": "notes/ready/how_to_computer/index.md",
"mode": "source",
"source": false
},
"icon": "lucide-file",
"title": "notes-update"
"title": "index"
}
},
{
"id": "5b5978f088ca6b22",
"type": "leaf",
"state": {
"type": "image",
"state": {
"file": "notes/ready/how_to_computer/input_selector.png"
},
"icon": "lucide-image",
"title": "input_selector"
}
}
]
@@ -78,7 +90,7 @@
}
],
"direction": "horizontal",
"width": 200
"width": 289.5
},
"right": {
"id": "f049c1d8215eafd9",
@@ -141,13 +153,13 @@
"state": {
"type": "outline",
"state": {
"file": "posts/notes-update.md",
"file": "notes/ready/how_to_computer/index.md",
"followCursor": false,
"showSearch": false,
"searchQuery": ""
},
"icon": "lucide-list",
"title": "Outline of notes-update"
"title": "Outline of index"
}
}
],
@@ -155,7 +167,7 @@
}
],
"direction": "horizontal",
"width": 200
"width": 249.5
},
"left-ribbon": {
"hiddenItems": {
@@ -169,40 +181,42 @@
"table-editor-obsidian:Advanced Tables Toolbar": false
}
},
"active": "ab03f7100c1ce0fb",
"active": "b73f137a8a755c19",
"lastOpenFiles": [
"_Templates/post.md",
"notes/ready/how_to_computer/input_selector.png",
"notes/ready/how_to_computer/index.md",
"notes/ready/how_to_computer/bit_switch.png",
"notes/ready/how_to_computer/bus.png",
"notes/ready/how_to_computer/signed_negator.png",
"notes/ready/how_to_computer/full_adder_8bit.png",
"notes/ready/how_to_computer/full_adder.png",
"notes/ready/how_to_computer/half_adder.png",
"notes/ready/binary_operations/index.md",
"notes/ready/how_to_computer/image.png",
"notes/ready/how_to_computer/OR_gates_big.png",
"notes/ready/how_to_computer/image4.png",
"TODO.md",
"notes/ready/transistors/index.md",
"notes/ready/diodes.md",
"notes/drafts/nvim.md",
"notes/drafts/linux/index.md",
"posts/notes-update.md",
"_Templates/post.md",
"_Templates/note.md",
"posts/personal-web.md",
"posts/linux-starter-guide.md",
"posts/local-llm.md",
"posts/nix-starter-guide.md",
"posts/dotfiles.md",
"notes/drafts/linux/index.md",
"TODO.md",
"notes/ready/flask.md",
"notes/ready/gdb.md",
"notes/ready/git.md",
"notes/ready/http.md",
"notes/ready/html.md",
"notes/ready/binary_operations/d1.png",
"notes/ready/binary_operations/index.md",
"notes/ready/binary_operations/d6.png",
"notes/ready/binary_operations/d5.png",
"notes/ready/binary_operations/d4.png",
"notes/ready/binary_operations/d3.png",
"notes/ready/binary_operations/d2.png",
"notes/ready/binary_operations/multiplication.png",
"notes/ready/firewall.md",
"drafts/nvim.md",
"drafts/rust.md",
"drafts/swift.md",
"drafts/TODO.md",
"drafts/Untitled.md",
"drafts/hardware-tools.md",
"drafts/macOS.md",
"ready/algorithms_and_data/index.md",
"ready/binary_operations/index.md"
"drafts/TODO.md"
]
}

View File

@@ -19,5 +19,6 @@ In draft folder? (checkbox)
- [x] Neovim, vim bindings, text editor
- [x] Hardware Debug/Repair Tools (maybe integrate JCionx page?)
- [ ] Android and custom ROMs
- [ ] netcat
### Enhancements

View File

@@ -1,14 +1,18 @@
---
title: "nvim"
title: nvim
description:
draft: true
tags:
tags:
- tools
- nvim
- vim
author: TrudeEH
showToc: true
---
## VIM Bindings
## Using Neovim
## Configuring Neovim

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -1,109 +0,0 @@
---
title: Diodes
description:
draft: false
tags:
- electronics
author: TrudeEH
showToc: true
---
A diode allows current to only flow in one direction in a circuit.
## Schematic
```Plain
Anode (+) --|>|-- Cathode (-)
```
## Examples
```Plain
[Conventional Current (+) -> (-)]
(+)------|>|------(-) Current can flow - The diode is now a conductor.
(+)------|<|------(-) Current can't flow - The diode is now an insulator.
```
## Use Cases
- Protect a circuit (if a battery is connected incorrectly, for example)
- Convert AC to DC current
Fun fact: An LED, for example, is a Light-Emitting Diode.
## How a Diode Works
### Conductors and Insulators
An atom contains the following elements:
- Nucleus (Protons - Neutrons)
- Orbital Shells (Holds the electrons, which orbit around the nucleus)
- Conduction band
The electrons closest to the nucleus hold the most energy.
The outermost shell is the valence shell. A conductor has 1-3 electrons in the valence shell.
If an electron reaches the conduction band, it can break free and move to another atom.
An insulator, however, has a conduction band that is far from the valence shell, making it difficult for an electron to escape.
For example, for copper (a great conductor), the valence shell and conduction band overlap, so it's very easy for an electron to jump between atoms.
Semiconductors have a conduction band close to the valence shell, but have one extra electron in it, making it an insulator. However, given some external energy, some electrons will gain enough energy to reach the conduction band and become free.
### P-Type and N-Type Doping
Silicon is a good semiconductor, having 4 electrons in its valence shell. When close to other `Si` atoms, they share 4 electrons with their neighbors, thus, having 8, each, and becoming stable.
```Plain
Silicon:
Si Si Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si Si Si
```
#### N-Type
Some Phosphorus is added to the Silicon. ==`p`== has one extra electron in its valence shell.
These electrons are not needed, and so, they flow freely from atom to atom.
```Plain
Si Si p Si Si Si Si Si Si Si p
p Si Si Si Si p Si Si Si Si Si
Si Si Si p Si Si Si Si p Si Si
Si p Si Si p Si Si Si Si Si Si
Si Si Si Si Si Si p Si Si p Si
Si p Si Si Si Si Si Si p Si Si
```
#### P-Type
Some Aluminum is added to the Silicon. `Al` is missing one electron, so it can't provide its 4 neighbors with an electron to share.
```Plain
Si Si Al Si Si Si Si Si Si Si Al
Al Si Si Si Si Al Si Si Si Si Si
Si Si Si Al Si Si Si Si Al Si Si
Si Al Si Si Al Si Si Si Si Si Si
Si Si Si Si Si Si Al Si Si Al Si
Si Al Si Si Si Si Si Si Al Si Si
```
### Combining both Types
When an N-Type is combined with a P-Type, some electrons from the N-Type side will move over to the P-Type side and occupy the missing electrons there. This creates a barrier between both types, creating an electric field that prevents more electrons from switching sides.
#### Forward Bias
If energy is provided to the Cathode, the electrons flow, as the voltage is superior to the barrier's.
```Plain
(-)-----[P|N]-----(+)
```
#### Reverse Bias
If energy is provided to the Anode, the electrons can't flow, as the barrier expands.
```Plain
(-)--[P] [N]--(+)
```

View File

Before

Width:  |  Height:  |  Size: 12 KiB

After

Width:  |  Height:  |  Size: 12 KiB

View File

Before

Width:  |  Height:  |  Size: 19 KiB

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

View File

Before

Width:  |  Height:  |  Size: 6.4 KiB

After

Width:  |  Height:  |  Size: 6.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

View File

Before

Width:  |  Height:  |  Size: 7.1 KiB

After

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 143 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 246 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

View File

Before

Width:  |  Height:  |  Size: 1010 KiB

After

Width:  |  Height:  |  Size: 1010 KiB

View File

Before

Width:  |  Height:  |  Size: 903 KiB

After

Width:  |  Height:  |  Size: 903 KiB

View File

Before

Width:  |  Height:  |  Size: 52 KiB

After

Width:  |  Height:  |  Size: 52 KiB

View File

Before

Width:  |  Height:  |  Size: 205 KiB

After

Width:  |  Height:  |  Size: 205 KiB

View File

Before

Width:  |  Height:  |  Size: 52 KiB

After

Width:  |  Height:  |  Size: 52 KiB

View File

Before

Width:  |  Height:  |  Size: 2.8 KiB

After

Width:  |  Height:  |  Size: 2.8 KiB

View File

Before

Width:  |  Height:  |  Size: 3.3 KiB

After

Width:  |  Height:  |  Size: 3.3 KiB

View File

Before

Width:  |  Height:  |  Size: 4.3 KiB

After

Width:  |  Height:  |  Size: 4.3 KiB

View File

Before

Width:  |  Height:  |  Size: 3.7 KiB

After

Width:  |  Height:  |  Size: 3.7 KiB

View File

Before

Width:  |  Height:  |  Size: 4.5 KiB

After

Width:  |  Height:  |  Size: 4.5 KiB

View File

Before

Width:  |  Height:  |  Size: 5.0 KiB

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

Before

Width:  |  Height:  |  Size: 5.2 KiB

After

Width:  |  Height:  |  Size: 5.2 KiB

View File

@@ -0,0 +1,666 @@
---
title: Building a Computer From Scratch
description:
draft: false
tags:
- electronics
- computer-science
author: TrudeEH
showToc: true
weight: "1"
---
## Diodes
A diode allows current to only flow in one direction in a circuit.
### Schematic
```Plain
Anode (+) --|>|-- Cathode (-)
```
### Examples
```Plain
[Conventional Current (+) -> (-)]
(+)------|>|------(-) Current can flow - The diode is now a conductor.
(+)------|<|------(-) Current can't flow - The diode is now an insulator.
```
### Use Cases
- Protect a circuit (if a battery is connected incorrectly, for example)
- Convert AC to DC current
Fun fact: An LED, for example, is a Light-Emitting Diode.
### How a Diode Works
#### Conductors and Insulators
An atom contains the following elements:
- Nucleus (Protons - Neutrons)
- Orbital Shells (Holds the electrons, which orbit around the nucleus)
- Conduction band
The electrons closest to the nucleus hold the most energy.
The outermost shell is the valence shell. A conductor has 1-3 electrons in the valence shell.
If an electron reaches the conduction band, it can break free and move to another atom.
An insulator, however, has a conduction band that is far from the valence shell, making it difficult for an electron to escape.
For example, for copper (a great conductor), the valence shell and conduction band overlap, so it's very easy for an electron to jump between atoms.
Semiconductors have a conduction band close to the valence shell, but have one extra electron in it, making it an insulator. However, given some external energy, some electrons will gain enough energy to reach the conduction band and become free.
#### P-Type and N-Type Doping
Silicon is a good semiconductor, having 4 electrons in its valence shell. When close to other `Si` atoms, they share 4 electrons with their neighbors, thus, having 8, each, and becoming stable.
```Plain
Silicon:
Si Si Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si Si Si
```
##### N-Type
Some Phosphorus is added to the Silicon. ==`p`== has one extra electron in its valence shell.
These electrons are not needed, and so, they flow freely from atom to atom.
```Plain
Si Si p Si Si Si Si Si Si Si p
p Si Si Si Si p Si Si Si Si Si
Si Si Si p Si Si Si Si p Si Si
Si p Si Si p Si Si Si Si Si Si
Si Si Si Si Si Si p Si Si p Si
Si p Si Si Si Si Si Si p Si Si
```
##### P-Type
Some Aluminum is added to the Silicon. `Al` is missing one electron, so it can't provide its 4 neighbors with an electron to share.
```Plain
Si Si Al Si Si Si Si Si Si Si Al
Al Si Si Si Si Al Si Si Si Si Si
Si Si Si Al Si Si Si Si Al Si Si
Si Al Si Si Al Si Si Si Si Si Si
Si Si Si Si Si Si Al Si Si Al Si
Si Al Si Si Si Si Si Si Al Si Si
```
#### Combining both Types
When an N-Type is combined with a P-Type, some electrons from the N-Type side will move over to the P-Type side and occupy the missing electrons there. This creates a barrier between both types, creating an electric field that prevents more electrons from switching sides.
##### Forward Bias
If energy is provided to the Cathode, the electrons flow, as the voltage is superior to the barrier's.
```Plain
(-)-----[P|N]-----(+)
```
##### Reverse Bias
If energy is provided to the Anode, the electrons can't flow, as the barrier expands.
```Plain
(-)--[P] [N]--(+)
```
## Transistor
Transistors are electronic components that behave like a `switch`, or `amplifier`.
### Schematic
```Plain
.--.,-- Collector
Base --(--|<)
`--`'-- Emitter
```
### Examples
#### Switch
If the `base` pin is provided with energy, the transistor allows current to flow in the main circuit.
![[image.png]]
#### Amplifier
Altering the voltage given to the `base` pin allows us to control a larger voltage in the main circuit.
![image1](image1.png)
### Types of Transistor
#### NPN
An NPN transistor combines the `base` pin and `collector` pin.
![image2](image2.png)
> Note: Even if the collector pin is disconnected from the circuit, a small amount of current still passes through. ![image3](image3.png)
#### PNP
A PNP transistor receives energy through the `emitter` pin, and then divides it to the remaining pins.
![image4](image4.png)
## Basic Logic
A logic gate is a device that performs one boolean operation: Two binary inputs produce a single binary output. These building blocks are the foundations of modern computing.
Each gate has its own truth table, which shows every possible input and output variations.
### NAND
A NAND gate, although not the simplest one, can be used to build all other basic gates.
![image45](image45.png)
#### Truth Table
|A|**B**|**Output**|
|---|---|---|
|0|0|1|
|0|1|1|
|1|0|1|
|1|1|0|
#### Implementation
##### Electronics
Implementation using switches and a pull-up resistor:
![[NAND_circuit.png]]
### NOT
Invert any given input.
![image42](image42.png)
#### Truth Table
|**Input**|**Output**|
|---|---|
|0|1|
|1|0|
#### Implementation
##### Logic Gates
![[NOT_gates.png]]
##### Electronics
![image50](NOT_electronics.png)
### AND
Outputs `1` only when both inputs are `1`.
![image43](image43.png)
#### Truth Table
|A|**B**|**Output**|
|---|---|---|
|0|0|0|
|0|1|0|
|1|0|0|
|1|1|1|
#### Implementation
##### Logic Gates
![[AND_gates.png]]
##### Electronics
![image51](AND_electronics.png)
![image52](AND_electronics_transistors.png)
#### Bigger AND Gate
AND gates can be chained to accept more inputs.
![[AND_gates_big.png]]
##### Truth Table
| A | **B** | C | **Output** |
| --- | ----- | --- | ---------- |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 |
### OR
Outputs `1` if at least one input is `1`.
![image44](image44.png)
#### Truth Table
|A|**B**|**Output**|
|---|---|---|
|0|0|0|
|0|1|1|
|1|0|1|
|1|1|1|
#### Implementation
##### Logic Gates
![[OR_gates.png]]
##### Electronics
![image53](OR_electronics.png)
#### Bigger OR Gate
![[OR_gates_big.png]]
##### Truth Table
| A | **B** | C | **Output** |
| --- | ----- | --- | ---------- |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 |
### NOR
An OR gate followed by a NOT gate.
A NOR gate is can also be used to build every other gate, just like NAND. However, NAND gates are preferred over NOR gates, as, in modern computers, they occupy less area and have less delay.
![image46](image46.png)
#### Truth Table
|A|**B**|**Output**|
|---|---|---|
|0|0|1|
|0|1|0|
|1|0|0|
|1|1|0|
#### Implementation
##### Logic Gates
![[NOR_gates.png]]
### XOR
Either input is `1`, exclusively. (OR, but if both inputs are on, it turns off.)
![image47](image47.png)
#### Truth Table
| A | **B** | **Output** |
| --- | ----- | ---------- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
#### Implementation
##### Logic Gates
![[XOR_gates.png]]
### XNOR
Inverted `XOR`.
![image49](image49.png)
#### Truth Table
|A|**B**|**Output**|
|---|---|---|
|0|0|1|
|0|1|0|
|1|0|0|
|1|1|1|
#### Implementation
##### Logic Gates
![[XNOR_gates.png]]
## Binary
Binary is a base-2 numeral system: A simple way to represent numbers using only two states.
|Binary|Decimal|Hexadecimal|
|---|---|---|
|0000|00|00|
|0001|01|01|
|0010|02|02|
|0011|03|03|
|0100|04|04|
|0101|05|05|
|0110|06|06|
|0111|07|07|
|1000|08|08|
|1001|09|09|
|1010|10|0A|
|1011|11|0B|
|1100|12|0C|
|1101|13|0D|
|1110|14|0E|
|1111|15|0F|
![Binary Calculations](binarycalc.png)
## Arithmetic Operations
### Addition
Adding two numbers can be done using a simple, manual algorithm: By adding the last bit of both numbers first, carry if necessary, then move on to the next number, and so on.
| **+** | 0 | 1 |
| ------- | --- | ---- |
| 0 | 0 | 1 |
| 1 | 1 | 10 |
![addition](addition.png)
#### Half Adder
Add 2, single-digit binary numbers.
| **A** | **B** | **Carry** | **Sum** |
| ----- | ----- | --------- | ------- |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |
![[half_adder.png]]
#### Full Adder (ADD)
When adding 2 binary numbers, one operation might return a carry value, which the `half adder` can't accept, as it only has 2 inputs.
![image69](image69.png)
To solve this issue, a `full adder` accepts 3 inputs.
![[full_adder.png]]
#### 8-Bit Adder
To add two bytes, chain 8 full-adders.
(The dark blue lines are buses: 8 bits in parallel, simplified for better readability)
![[full_adder_8bit.png]]
### Two's Complement
The most common solution to represent negative numbers is to interpret the last bit as a negative value. For a byte, the last bit changes its value from 128 to -128.
> A negative number is often called a *signed* number.
The main advantage of the Two's Complement system is that the adder built previously also works with it.
#### Invert Sign
To switch between negative and positive numbers, flip all bits, then add 1.
![[signed_negator.png]]
---
### Subtraction
Subtraction can result in negative numbers. Like how additions need a carry, subtraction needs a borrow.
#### Half Subtractor
Subtract 2, single-digit binary numbers.
| **A** | **B** | Diff | **Borrow** |
| ----- | ----- | ---- | ---------- |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
![image72](image72.png)
#### Full Subtractor
A `full subtractor` accepts the borrow value, allowing us to chain results.
| **A** | **B** | **B**in | **Diff** | **B**out |
| ----- | ----- | ------- | -------- | -------- |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |
![image73](image73.png)
#### 8-Bit Subtractor
![image74](image74.png)
### Multiplication
Multiplication is also similar to its decimal counterpart, but because binary is so small compared to decimal, the steps are also much simpler.
First, multiply the top number to every digit of the bottom one, and then add the results together.
| X | 0 | 1 |
| --- | --- | --- |
| 0 | 0 | 0 |
| 1 | 0 | 1 |
![multiplication](multiplication.png)
#### 2-Bit By 2-Bit Multiplier
![image75](image75.png)
### Division
1. Find the smallest part of the dividend greater than or equal to the **divisor**.![d1](d1.png)
2. Write the first digit of **the answer**, and **copy the original divisor down**.![d2](d2.png)
3. Subtract the **aligned dividend digits** by **the digits under the dividend**.![d3](d3.png)
4. Lower **the next dividend digit**.![d4](d4.png)
5. Is **the total** greater or equal to the **divisor**? If so, add a `1` to the answer. If not, **add a `0` to the answer and return to step 4**.![d5](d5.png)
6. Return to step 2, until you reach the end of the number. If you reached the end, you found **the answer**.![d6](d6.png)
## Memory
### Byte Switch (SWC)
A bit switch, also known as transistor, toggles a given input, using a separate bit.
![[bit_switch.png]]
If 8 transistors are controlled by the same bit in parallel a Byte Switch is created.
### Input Selector
Using a switch, we can select which input to use.
![[input_selector.png]]
### Bus
A Bus is useful to simplify wiring. One bit controls which input should be selected, and a second one, the output. This way, a single wire can transfer twice as much information.
![[bus.png]]
### ASCII
Binary can also be used to represent characters.
| Dec | Hex | Binary | HTML | Char | Description |
| --- | --- | -------- | -------- | ----------- | ------------------------- |
| 0 | 00 | 00000000 | `&#0;` | NUL | Null |
| 1 | 01 | 00000001 | `&#1;` | SOH | Start of Heading |
| 2 | 02 | 00000010 | `&#2;` | STX | Start of Text |
| 3 | 03 | 00000011 | `&#3;` | ETX | End of Text |
| 4 | 04 | 00000100 | `&#4;` | EOT | End of Transmission |
| 5 | 05 | 00000101 | `&#5;` | ENQ | Enquiry |
| 6 | 06 | 00000110 | `&#6;` | ACK | Acknowledge |
| 7 | 07 | 00000111 | `&#7;` | BEL | Bell |
| 8 | 08 | 00001000 | `&#8;` | BS | Backspace |
| 9 | 09 | 00001001 | `&#9;` | HT | Horizontal Tab |
| 10 | 0A | 00001010 | `&#10;` | LF | Line Feed |
| 11 | 0B | 00001011 | `&#11;` | VT | Vertical Tab |
| 12 | 0C | 00001100 | `&#12;` | FF | Form Feed |
| 13 | 0D | 00001101 | `&#13;` | CR | Carriage Return |
| 14 | 0E | 00001110 | `&#14;` | SO | Shift Out |
| 15 | 0F | 00001111 | `&#15;` | SI | Shift In |
| 16 | 10 | 00010000 | `&#16;` | DLE | Data Link Escape |
| 17 | 11 | 00010001 | `&#17;` | DC1 | Device Control 1 |
| 18 | 12 | 00010010 | `&#18;` | DC2 | Device Control 2 |
| 19 | 13 | 00010011 | `&#19;` | DC3 | Device Control 3 |
| 20 | 14 | 00010100 | `&#20;` | DC4 | Device Control 4 |
| 21 | 15 | 00010101 | `&#21;` | NAK | Negative Acknowledge |
| 22 | 16 | 00010110 | `&#22;` | SYN | Synchronize |
| 23 | 17 | 00010111 | `&#23;` | ETB | End of Transmission Block |
| 24 | 18 | 00011000 | `&#24;` | CAN | Cancel |
| 25 | 19 | 00011001 | `&#25;` | EM | End of Medium |
| 26 | 1A | 00011010 | `&#26;` | SUB | Substitute |
| 27 | 1B | 00011011 | `&#27;` | ESC | Escape |
| 28 | 1C | 00011100 | `&#28;` | FS | File Separator |
| 29 | 1D | 00011101 | `&#29;` | GS | Group Separator |
| 30 | 1E | 00011110 | `&#30;` | RS | Record Separator |
| 31 | 1F | 00011111 | `&#31;` | US | Unit Separator |
| 32 | 20 | 00100000 | `&#32;` | space | Space |
| 33 | 21 | 00100001 | `&#33;` | ! | exclamation mark |
| 34 | 22 | 00100010 | `&#34;` | " | double quote |
| 35 | 23 | 00100011 | `&#35;` | # | number |
| 36 | 24 | 00100100 | `&#36;` | $ | dollar |
| 37 | 25 | 00100101 | `&#37;` | % | percent |
| 38 | 26 | 00100110 | `&#38;` | & | ampersand |
| 39 | 27 | 00100111 | `&#39;` | ' | single quote |
| 40 | 28 | 00101000 | `&#40;` | ( | left parenthesis |
| 41 | 29 | 00101001 | `&#41;` | ) | right parenthesis |
| 42 | 2A | 00101010 | `&#42;` | * | asterisk |
| 43 | 2B | 00101011 | `&#43;` | + | plus |
| 44 | 2C | 00101100 | `&#44;` | , | comma |
| 45 | 2D | 00101101 | `&#45;` | - | minus |
| 46 | 2E | 00101110 | `&#46;` | . | period |
| 47 | 2F | 00101111 | `&#47;` | / | slash |
| 48 | 30 | 00110000 | `&#48;` | 0 | zero |
| 49 | 31 | 00110001 | `&#49;` | 1 | one |
| 50 | 32 | 00110010 | `&#50;` | 2 | two |
| 51 | 33 | 00110011 | `&#51;` | 3 | three |
| 52 | 34 | 00110100 | `&#52;` | 4 | four |
| 53 | 35 | 00110101 | `&#53;` | 5 | five |
| 54 | 36 | 00110110 | `&#54;` | 6 | six |
| 55 | 37 | 00110111 | `&#55;` | 7 | seven |
| 56 | 38 | 00111000 | `&#56;` | 8 | eight |
| 57 | 39 | 00111001 | `&#57;` | 9 | nine |
| 58 | 3A | 00111010 | `&#58;` | : | colon |
| 59 | 3B | 00111011 | `&#59;` | ; | semicolon |
| 60 | 3C | 00111100 | `&#60;` | < | less than |
| 61 | 3D | 00111101 | `&#61;` | = | equality sign |
| 62 | 3E | 00111110 | `&#62;` | > | greater than |
| 63 | 3F | 00111111 | `&#63;` | ? | question mark |
| 64 | 40 | 01000000 | `&#64;` | @ | at sign |
| 65 | 41 | 01000001 | `&#65;` | A | |
| 66 | 42 | 01000010 | `&#66;` | B | |
| 67 | 43 | 01000011 | `&#67;` | C | |
| 68 | 44 | 01000100 | `&#68;` | D | |
| 69 | 45 | 01000101 | `&#69;` | E | |
| 70 | 46 | 01000110 | `&#70;` | F | |
| 71 | 47 | 01000111 | `&#71;` | G | |
| 72 | 48 | 01001000 | `&#72;` | H | |
| 73 | 49 | 01001001 | `&#73;` | I | |
| 74 | 4A | 01001010 | `&#74;` | J | |
| 75 | 4B | 01001011 | `&#75;` | K | |
| 76 | 4C | 01001100 | `&#76;` | L | |
| 77 | 4D | 01001101 | `&#77;` | M | |
| 78 | 4E | 01001110 | `&#78;` | N | |
| 79 | 4F | 01001111 | `&#79;` | O | |
| 80 | 50 | 01010000 | `&#80;` | P | |
| 81 | 51 | 01010001 | `&#81;` | Q | |
| 82 | 52 | 01010010 | `&#82;` | R | |
| 83 | 53 | 01010011 | `&#83;` | S | |
| 84 | 54 | 01010100 | `&#84;` | T | |
| 85 | 55 | 01010101 | `&#85;` | U | |
| 86 | 56 | 01010110 | `&#86;` | V | |
| 87 | 57 | 01010111 | `&#87;` | W | |
| 88 | 58 | 01011000 | `&#88;` | X | |
| 89 | 59 | 01011001 | `&#89;` | Y | |
| 90 | 5A | 01011010 | `&#90;` | Z | |
| 91 | 5B | 01011011 | `&#91;` | [ | left square bracket |
| 92 | 5C | 01011100 | `&#92;` | \|backslash | |
| 93 | 5D | 01011101 | `&#93;` | ] | right square bracket |
| 94 | 5E | 01011110 | `&#94;` | ^ | caret / circumflex |
| 95 | 5F | 01011111 | `&#95;` | _ | underscore |
| 96 | 60 | 01100000 | `&#96;` | ` | grave / accent |
| 97 | 61 | 01100001 | `&#97;` | a | |
| 98 | 62 | 01100010 | `&#98;` | b | |
| 99 | 63 | 01100011 | `&#99;` | c | |
| 100 | 64 | 01100100 | `&#100;` | d | |
| 101 | 65 | 01100101 | `&#101;` | e | |
| 102 | 66 | 01100110 | `&#102;` | f | |
| 103 | 67 | 01100111 | `&#103;` | g | |
| 104 | 68 | 01101000 | `&#104;` | h | |
| 105 | 69 | 01101001 | `&#105;` | i | |
| 106 | 6A | 01101010 | `&#106;` | j | |
| 107 | 6B | 01101011 | `&#107;` | k | |
| 108 | 6C | 01101100 | `&#108;` | l | |
| 109 | 6D | 01101101 | `&#109;` | m | |
| 110 | 6E | 01101110 | `&#110;` | n | |
| 111 | 6F | 01101111 | `&#111;` | o | |
| 112 | 70 | 01110000 | `&#112` | p | |
| 113 | 71 | 01110001 | `&#113;` | q | |
| 114 | 72 | 01110010 | `&#114;` | r | |
| 115 | 73 | 01110011 | `&#115;` | s | |
| 116 | 74 | 01110100 | `&#116;` | t | |
| 117 | 75 | 01110101 | `&#117;` | u | |
| 118 | 76 | 01110110 | `&#118;` | v | |
| 119 | 77 | 01110111 | `&#119;` | w | |
| 120 | 78 | 01111000 | `&#120;` | x | |
| 121 | 79 | 01111001 | `&#121;` | y | |
| 122 | 7A | 01111010 | `&#122;` | z | |
| 123 | 7B | 01111011 | `&#123;` | { | left curly bracket |
| 124 | 7C | 01111100 | `&#124;` | \| | vertical bar |
| 125 | 7D | 01111101 | `&#125;` | } | right curly bracket |
| 126 | 7E | 01111110 | `&#126;` | ~ | tilde |
| 127 | 7F | 01111111 | `&#127;` | DEL | delete |

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.5 KiB

View File

@@ -1,122 +0,0 @@
---
title: Logic Gates
description:
draft: false
tags:
- electronics
- computer-science
author: TrudeEH
showToc: true
---
## NOT
Invert the input.
![image42](image42.png)
### Truth Table
|**Input**|**Output**|
|---|---|
|0|1|
|1|0|
## AND
Output `1` only when both inputs are `1`.
![image43](image43.png)
### Truth Table
|A|**B**|**Output**|
|---|---|---|
|0|0|0|
|0|1|0|
|1|0|0|
|1|1|1|
## OR
Output `1` if at least one input is `1`.
![image44](image44.png)
### Truth Table
|A|**B**|**Output**|
|---|---|---|
|0|0|0|
|0|1|1|
|1|0|1|
|1|1|1|
## NAND
An `AND` gate followed by a `NOT` gate.
![image45](image45.png)
### Truth Table
|A|**B**|**Output**|
|---|---|---|
|0|0|1|
|0|1|1|
|1|0|1|
|1|1|0|
## NOR
An `OR` gate followed by a `NOT` gate.
![image46](image46.png)
### Truth Table
|A|**B**|**Output**|
|---|---|---|
|0|0|1|
|0|1|0|
|1|0|0|
|1|1|0|
## XOR
Either input is `1`, exclusively.
![image47](image47.png)
![image48](image48.png)
### Truth Table
|A|**B**|**Output**|
|---|---|---|
|0|0|0|
|0|1|1|
|1|0|1|
|1|1|0|
## XNOR
Inverted `XOR`.
![image49](image49.png)
### Truth Table
|A|**B**|**Output**|
|---|---|---|
|0|0|1|
|0|1|0|
|1|0|0|
|1|1|1|
## Implementation Examples
### NOT
![image50](image50.png)
### AND
![image51](image51.png)
![image52](image52.png)
### OR
![image53](image53.png)

View File

@@ -1,49 +0,0 @@
---
title: Transistors
description:
draft: false
tags:
- electronics
author: TrudeEH
showToc: true
---
Transistors are electronic components that behave like a `switch`, or `amplifier`.
## Schematic
```Plain
.--.,-- Collector
Base --(--|<)
`--`'-- Emitter
```
## Examples
### Switch
If the `base` pin is provided with energy, the transistor allows current to flow in the main circuit.
![image](image.png)
### Amplifier
Altering the voltage given to the `base` pin allows us to control a larger voltage in the main circuit.
![image1](image1.png)
## Types of Transistor
### NPN
An NPN transistor combines the `base` pin and `collector` pin.
![image2](image2.png)
> Note: Even if the collector pin is disconnected from the circuit, a small amount of current still passes through. ![image3](image3.png)
### PNP
A PNP transistor receives energy through the `emitter` pin, and then divides it to the remaining pins.
![image4](image4.png)